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Correspondence

Analysis and Calibration of a Reflection
Coefficient Bridge for Use with Any
Waveguide Mode

Single-frequency measurements of both
absolute phase and absolute magnitude of a
complex reflection coefficient are required in
determining complex permittivity by the
Roberts-von Hippel [1] method. The slotted
line, although traditionally the basic tool for
these measurements, suffers from several dis-
advantages. Among them are errors caused
by the perturbing influence of the probe and
slot and decreased precision at short (milli-
meter) wavelengths and low VSWR’s. Re-
flectometers of the Engen and Beatty [2]
type and “return-loss test sets” such as used
by Pomeroy [3] yield high precision at low
VSWR’s but measure only magnitude and
are therefore unacceptable. Some microwave
bridges measure complex reflection coefficient,
however, thus offering an effective alterna-
tive to the slotted line.

In its simplest form, the complex reflection
coefficient bridge consists of a comparator
network (e.g., hybrid tee, hybrid ring, op-
posed direcional couplers, etc.) which bal-
ances the signal reflected from the unknown
impedance against that reflected from a cali-
brated variable (complex) reflection coeffi-
cient [4], [5]. Previously, these signals have
been assumed equal at balance so that spe-
cially machined comparator networks posses-
sing extreme symmetry have been required
for accurate results. This requirement is re-
moved in the present correspondence by ana-
lyzing the bridge mathematically and using
preliminary calibration measurements to take
mechanical imperfections into account. Ad-
vantages of this approach are twofold. First,
it allows one to obtain accurate results using
an ordinary commercial grade “magic” tee
as a comparator element. Second, the present
bridge is extremely versatile and can contain
bends, windows, mode transducers, etc.,
without sacrificing accuracy. We have, for
example, used such a bridge to measure the
reflection coefficient of the circular TEy
mode at 48 GHz [6] by merely introducing a
mode transducer into the sample arm and
then including it in the calibration measure-
ments.

The price one pays for these advantages is
an increase in complexity of the calculations
relating bridge measurements to actual mag-
nitude and phase of reflection coefficient.
For most laboratory studies, however, this
disadvantage is not particularly significant
and can be overcome by the use of asimple
computer program to process the data.

Consider the basic bridge network of Fig.
1. The tandem combination of a precision
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(rotary-vane) attenuator and a precision
short circuit constitutes a variable complex re-
flection coefficient standard. For simplicity,
the comparator network is shown as a hybrid
tee in Fig. 1 although the present analysis ac-
tually applies to any “four-port” capable of
producing null at balance. The waveguide
mode at port 4 need not even be the same as
that at port 3 although it is tacitly assumed
that only one mode is excited at each port.

The input-output relations of the “four-
port” comparator are described by the ma-
trix equation

b = Sa 1)

where a and b are column matrices repre-
senting incident and scattered waves, respec-
tively, and S is the scattering matrix. At ports
3 and 4, incident and scattered waves are re-
lated by

or = a3/bs @
and
ps = Qa/bs, @)
while null output at port 6 yields
bs = 0. 1G]

Combining (1) through (4) leads to the linear,
homogeneous set

(Sszpr — 1bs + Saspebs + Sasas = 0
Ssepibs + (Saspz — 1)bs + Sya5 = 0
Saep:bs + Ssepebs + Sseas =0 (5)
whose solution exists if, and only if, the
determinant of the coefficients is zero. Equat-

ing this determinant to zero yields an equa-
tion of the form
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where «, §, and v are complex constants given
by
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Fig. 1. Schematic diagram of basic reflection coeffi-
cient bridge including calibration loads. Although
the comparator network is shown to be a hybrid tee,
the analysis actually applies to any *“four-port” ca-
pable of yiclding null output at balance.
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measurements will be required to determine
a, 8, and v.

Another fairly significant error that can
be greatly reduced by preliminary measure-
ments arises from reflections at the input
ports of the rotary-vane attenuator. Such re-
flections are themselves functions of the at-
tenuator setting. Holm et al. [7], have shown,
however, that to a good approximation the
attenuator’s scattering coefficients are of the
form

Sn = An cos?g
Su = Au + Bu sinzﬂ + 011 sin’ (20)
S22 = Agy + Bassin?6 + Cypsin? (26) (10)

where ¢ is the vane angle and is related to the
attenuator setting in decibles by

cos? § = 10-dB/20; (11)

and where A.;, Bi;, and C; are constants. The
constant 4, contains the insertion loss of the
attenuator. One can show further that p, is
given by
Sl22Ps

pr =T
’ 1 — Sups
where, for a precision short circuit in which a
plane of constant phase moves linearly with
position,

+ Sas (12)

ps = Kgifole, (13)
Combining (6) and (10) through (13), while
utilizing the experimentally justified [7] ap-
proximations

|Su| «1

Iszl < IBgzl, (14)
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and neglecting products of small terms, yields
finally an equation of the form

pz =

One can show that (6) reduces simply to p. =p,
for the special case of perfect symmetry. In
general, however, at least three preliminary

K4{ 1(Q—dB/10g— Zﬂsls} +1

(15)

where K, K3, K;, and K, are complex constants
that describe the overall bridge network. For
an “ideal” bridge, |Ki| would equal unity
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while K», K3, and K, would be zero.

Calibration of the bridge may be accom-
plished by performing preliminary balances
with known values of p, and simultaneously
solving (15) for K; through K, A digital
computer has proven an invaluable aid in per-
forming this mathematical step. For the
rectangular TE;, mode, we have calibrated
the bridge with three short circuits spaced ap-
proximately 120 degrees apart (Fig. 1) fol-
lowed by a matched termination that had been
tuned for zero reflections with a tuned reflec-
tometer {2]. This procedure has yielded ac-
curacies better than 0.001 in magnitude and }
degreein phase over theentirerange 0 2| p| <1
at 10 and 24 GHz,

With the circular TEn mode, a well-
matched termination is difficult to achieve.
We have, therefore, extended the technique
to include five preliminary balances: three
with short circuits; one with a “matched”
termination ; and one more with the “matched”
termination shifted by approximately one-
quarter wave. The resultant five equations
were then solved simultaneously for K,—K;
and also for the reflection coefficient of the
“matched” termination. This procedure has
yielded accuracies better than 0.01 in magni-
tude and 1 degree in phase for 0Z[p|<1 at
24, 48, and 70 GHz. We believe that the ulti-
mate accuracy of the circular TEy mode
bridges is presently being limited by the modal
purity of the available mode transducers.

Differences in the electrical path lengths of
reference and sample arms will cause bridge
balance to be frequency sensitive. For maxi-
mum phase precision, therefore, one should
take steps to insure that these paths are
nearly equal and that the frequency of the
oscillator is stable. Electronic control [8] of
the klystron oscillator frequency has proven
to be a desirable refinement.
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Magnetodynamic Modes in Axially
Magnetized Ferrite Rods Between Two
Parallel Conducting Sheets

Open electromagnetic resonators are well-
known structures for many applications in
the microwave region [1]. Assuming a loss-
less nonconducting medium partly surrounded
by perfectly conducting metal walls, a mani-
fold of undamped oscillations may exist
provided the enmergy of the corresponding
electromagnetic field (with finite amplitude)
remains finite. In practice, high Q modes oc-
cur in open resonators built from isotropic
or anisotropic dielectrics [2], [9] or ferrites
[3], [4] partly enclosed by well conducting
metal walls. In the case of ferrites, the resona-
tor is tunable by a dc magnetic field which
may be useful for many technical applications.

In this correspondence, the open resona-
tor shown in Fig. 1 will be investigated. One
azimuthally symmetric mode of this resonator
structure has been described earlier [4]. All
nonradiating electromagnetic eigensolutions
of e/t time dependence will be analyzed in
the following. The rod is homogeneously
magnetized to saturation (saturation magneti-
Zation M) in z direction by a biasing dc mag-
netic field Hy®. The ferrite is assumed to be
lossless; the conductivity of the metal walls
shall be perfect. The intensities of the RF
electromagnetic fields are supposed to be so
small that the linear relation

By = polmaHy + juslis X Hig) + Huis] (1)

between the magnetic induction B and the
magnetic field H is valid, In (1)

_ 1+ ho‘. _ w
M= ho? — w? k2 = hoi? — w?
where

Hi
hoi= 2 1 w=i
MS fm
Here is
Yo
== — ——ag M
J/ o 9 Ms

(g=g factor, the free electron gyromagnetic
ratio yo=—2.21 107 cm/A-s f=w/2x=fre-
quency).

The boundary conditions of the electric
field E and the magnetic induction on the
metal sheets can be met by

Eif.a = Fif.a sin Bz, @)
E.fa = Faz.a cos Bz, (3)
Hipo = Gif.a cOS B2, (4)
H,ro = Q5.0 810 Bz, %)
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where

T
6=7P b=0,1,2--+). 6)
Subscript “f” denotes fields in the ferrite,
subscript “g” characterizes fields in the air-
filled region. According to Kales [6], differ-
ential equations of the z components (sub-
script z) can be set up from Maxwell’s equa-
tions. By vector operations, it is possible to
derive the transverse components (subscript
f) from the z components. The Kales® for-
mulas are modified to

b
F.y= Uty + Uss, @)
ss—a

82— a

b

Gip = wiy + Uag ®

to get also the solution of an infinitely high
dc magnetic field, where the ferrite behaves
as an isotropic medium [10]. Here s; and s,
are defined by

sia=1[a + ¢ F V@ — o) +4bd], (9

if 5; has the minus sign and s the plus sign
of the square root, respectively. In (9) are

M2 134
a=g9g——k% b= —owuf—>
M1 M1
9 H2
c=-—) d = — weeB—>
M1 I
with
w? w?
9F = — e — B4 k? = — erua
Co Co

(¢s is the relative permittivity of the ferrite
material and ¢, the velocity of the light in
vacuum.)

The solutions of the differential equations
of the z components in cylindrical coordinates
are

Uif = AmZm(our)erms, 10)
oy = BuZn(oor)eimé, 11)
Goo = CrKp(hr)eims, (12)
F.i = DnKu(hr)ems, (13)
where
m=0, £1, £2, - .- .
In these equations
w? -
hz:ﬂz'—c_oz' 0’1,2=\/|81.2!,
Zn(o1,2r) = Imlor.or) for 81,5 > 0,

Zm(a’l,ﬂ') = Im(a'l,zf') for 81,0 < 0.

Jn means the Bessel function of order m,
I, is the modified Bessel function of the first
kind and of the order m, K, is the modified
Bessel function of the second kind and of the
order m.

Nonradiating eigensolutions only exist for
h*>0, i.e., z independent nonradiating eigen-
solutions are not possible. The eigenvalue
equation is obtained by meeting the continu-
ity conditions at r=r,

AnAgy — A1pda = 0. (14a)



